COCHLEAR® VISTAFIX®

Treatment and Surgery Guide

A BONE ANCHORED FACIAL PROSTHETIC SOLUTION

Hear now. And always.
This publication sets forth detailed recommended procedures for using Cochlear™ Vistafix® surgical components and instruments. It offers guidance needed for performing the procedure but, as with any technical guide, the surgeon must consider the particular needs of each patient and make appropriate adjustments when and as required. The techniques shown in this guide are provided for your consideration only, and do not constitute direct medical or anaplastological advice from Cochlear. This guide is not a substitute for actual medical education and hands-on training.

Cochlear accepts no responsibility for any adverse outcomes if used with products not recommended by Cochlear. Close cooperation in an interdisciplinary team is essential for a successful outcome. Hands-on surgical workshops are available from Cochlear. Contact your local Cochlear office for details.

Products in this manual are protected by the following patents: US 5 735 790, US 5 935 170, EP 0715839, EP 0715838, US 07074222, WO 02/096632, US 7409070, EB 01634284, US 27095653, WO 04105650 and corresponding patents in other countries and pending patent applications. All products can be subject to change without notice. No part of this publication may be replaced, stored in a retrieval system, or transmitted, in any form by any electronic or mechanical means, photocopying, recording or otherwise, without the prior written permission of the publisher.

Acknowledgements
The protocols detailed in this manual originate from the clinical work carried out by:
Anders Tjellström, M.D., Ph.D, D.Sc.hc
Dr. Joacim Stalfors, M.D., Ph.D
Kerstin Bergström, C.D.T., M.D.hc and colleagues.

Department of Otolaryngology, Sahlgrenska University Hospital, Gothenburg, Sweden.
Introduction

Since 1979, the Cochlear Vistafix bone anchored facial prosthetic solution has proven successful for thousands of patients worldwide. The Cochlear Vistafix System* — which combines titanium implants, abutments, and retention components for prostheses — has yielded excellent results for patients with craniofacial defects due to congenital conditions, trauma or cancer surgery.1

The Vistafix System builds on the technology of the Bränemark system, providing a means of offering permanent and secure retention for facial prostheses. The long-term predictability and success of this treatment is based on the creation of an active bond between the implant and the surrounding bone tissue — a process known as osseointegration.

The use of a precise implantation technique and attention to detail in soft tissue management is of utmost importance for a successful outcome and for a reaction-free implant site. This material offers guidance for you to consider in performing the surgical procedure and fitting the prosthesis. In order to obtain optimal results, surgeons, prosthodontists, anaplastologists and technicians should work in close collaboration, which should continue during the follow-up period.

* The Vistafix 3 System consists of Cochlear Vistafix VXI300 Implants (Vistafix 3 Implants) and Cochlear Vistafix VXA300 Abutments (Vistafix 3 Abutments).

The prior generation Vistafix System consists of Cochlear Vistafix ST Fixtures (flangeless) and Standard abutments.
Preparations

Preliminary examination and consultation

A thorough examination of the defect tissue bed should be performed and etiology of the defect should be determined: congenital, trauma or tumor surgery. Make sure that the patient has realistic expectations of the Vistafix treatment. If the patient wishes to pursue osseointegrated implants, the sequence of therapy and the possible morbidities should be carefully described. Sketches, photographs, models and computer-manipulated photos are useful in this respect.

Multidisciplinary collaboration between maxillofacial surgeons, plastic surgeons and anaplastologists/prosthetists is always essential if optimal results are to be achieved. Inviting the members of the multidisciplinary team to surgery and making templates for implant placement in surgery is recommended.

External ear

Congenital and trauma patients

To optimize aesthetic results, auricular remnants are often removed. It is, however, important that the patient makes this decision and is aware that this removal is irreversible.

Tumor patients

For patients undergoing auriculectomy, a pre-surgical impression could facilitate future prosthetic procedures. In addition, specific surgical issues such as position of the tragus, and lining the tissue bed with a hairless split-thickness skin graft etc., should be discussed.

For tumor surgery, Vistafix Implants may be placed at the time of surgery in order to shorten the rehabilitation time. The patient’s age and the psychosocial implications of rehabilitation also need to be considered during treatment planning.

Orbital and midface defects

The nature of the orbital defect and the morphology of the residual bone elements of the orbital rim need careful evaluation prior to implant placement. In addition, the prospective contours of the future orbital prosthesis should be anticipated so as to avoid the placement of implants in locations and directions that may adversely affect the aesthetic contours, or make it more difficult for the patient to attach or remove the prosthesis.

It is important to note that anaplastologists/prosthetists need to be able to conceal hardware within the prosthesis. Care should be taken in consultation with the entire multidisciplinary team to ensure appropriate placement of implants in a way that will facilitate an optimal aesthetic outcome.

The same principles should guide clinicians regarding implant placement in patients with nasal defects — namely, the needs of stability, support and retention, while avoiding implant placement which could adversely affect the aesthetic contours of the nasal prosthesis.

Treatment planning

One-stage surgery vs. two-stage surgery

The surgeon will decide to follow either the one-stage or two-stage procedure. This decision is based on several factors, including the type of defect, the thickness and quality of the cortical bone as well as the patient’s age. Generally, one-stage surgery is recommended for auricular patients with good bone quality and thickness greater than 3 mm and the two-stage surgery for patients with compromised or soft bone, irradiated bone, thin bone and special-needs patients (e.g., mentally or physically compromised) as well as orbital or nasal defects.

<table>
<thead>
<tr>
<th>ONE-STAGE SURGERY</th>
<th>TWO-STAGE SURGERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection criteria</td>
<td>Selection criteria</td>
</tr>
<tr>
<td>Auricular defects</td>
<td>Orbital and midface defects</td>
</tr>
<tr>
<td>Good bone quality and thickness > 3 mm</td>
<td>Compromised or soft bone</td>
</tr>
</tbody>
</table>

With a one-stage surgery, the osseointegration period is a minimum of 12 weeks, while a two-stage procedure will have an osseointegration period of at least 16 weeks, and possibly longer, depending on the thickness and quality of the bone encountered at stage one. The poorer the bone quality, the longer the time between stage one and two. As age and/or bone thickness increase, the time between the first and second stage surgeries may decrease.

NOTE: In the U.S. and Canada, the Vistafix Implant is indicated for children aged five years and older.

Irradiated tissue

For patients who have been irradiated, a two-stage procedure with a 4–6 month interval between implant placement and abutment connection is recommended.

If a patient has already had an implant placed and is scheduled for irradiation around the implant area, the skin-penetrating abutments should be removed and a cover screw placed in the implant. However, the osseointegrated implants can be left in place under intact skin.

Placing sleeper implants

Since there is a slightly higher rate of implant loss in children, placing a sleeper implant is recommended in order to reduce the time between loss of an implant and the ability to wear the prosthesis.
Selecting the implant site

The position of the implants should be selected in collaboration with the anaplastologist and/or prosthetic team for the best aesthetic and functional outcome. The implant sites should be carefully marked, using a thin needle or surgical ink, down to the bone while the patient is sitting and the face can still be easily seen. The location of specific anatomical landmarks such as the linea temporalis, suprameatal spine, foramen mastoideum etc., is often helpful. Anatomical variations due to congenital malformation and prior surgery should be considered.

Two implants are often sufficient for satisfactory retention. Three implants may be needed for optimal retention. An additional implant can also be placed as a sleeper implant in children or patients with irradiated bone.

Three implants are often used in conjunction with magnetic retention (Fig 1). When using a bar and clip retention, to obtain a good depth for the auricular prosthesis, the retention bar should be located under the anti-helix part of the prosthesis; therefore the implants should also be located directly under the anti-helix (Fig. 2).

The ideal position is approximately 20 mm from the center of the external ear canal opening or, in the case of the atretic ear, the anticipated opening. On the patient’s left side, the positions are at 4 o’clock and 1:30 (Fig. 3a). On the right side the corresponding positions are at 8 o’clock and 10:30 (Fig. 3b). When using three implants, placing the implants at 1:30, 3:00 and 4:30 (for left ear), and 10:30, 9:00 and 7:30 (for a right ear) is appropriate. The distance between the implants should be at least 10 mm to facilitate cleaning around the abutment.

Preparations for surgery

The operating room should be prepared as for any other implant surgical procedure, where all instruments are available, functional and sterile.

Prepare the patient as for any surgical procedure, i.e., shave if needed and sterilize the incision area.

Local or general anesthesia can be used for adult patients. General anesthesia is most commonly used when children undergo Vistafi x surgery.

NOTE:
• Only sterile products designed for the VIO 300 Implant System should be used together.
• All sterile products are for single use only. Do not use products with damaged packaging or which are past their expiration date (Fig. 4).
• The peel-open pack inside the sterile product box acts as the sterile barrier. The plastic ampule is only a container for the sterile product (Fig. 5). Inside the plastic ampule, a titanium casing holds the product. The product should only be picked up by the relevant instrument.
• A set of all sterile products should always be available, as one-stage surgery may change to two-stage surgery. It is also recommended that for each component, an extra should be available in case it is dropped.

Measuring implant stability

Resonance frequency analysis (RFA) is an option that can supply clinically relevant information about the state of the implant-bone interface at any stage of the treatment or follow-up examinations. The measurement is performed with a small SmartPeg, which acts as a transducer attached to the implant or abutment.

For more information about the Osstell device and SmartPeg, please visit www.osstell.com. Studies indicate that implants with high and increasing implant stability quotient (ISQ) values are successfully integrated. At the same time, low and decreasing ISQ values may be a sign of ongoing implant failure and/or marginal bone loss.2
Component selection

Auricular prostheses

The most common abutment lengths for auricular prostheses are 3.5 and 4.5 mm. A low profile on the anchoring system will often offer a more aesthetic prosthesis, however, the ability to clean the abutment area is important. For patients with special anatomy or very thick skin around the abutments, longer abutments may be necessary. When a one-stage surgical procedure is planned, it is recommended to always have cover screws available during surgery in case bone quality is softer than anticipated and a two-stage procedure is required instead.

It is recommended that you always keep additional components for a 3 mm implant insertion available during surgery in case bone thickness is less than expected.

Orbital and midface prostheses

For orbital and midface prostheses a two-stage procedure is recommended. The patient’s unique clinical needs determine the selection of implant and abutment used in surgery. The case should be carefully planned with anoplastologists and experienced clinicians. In general, it is recommended to use a 4 mm implant when bone volume allows and place sleeper implants with cover screws in irradiated or soft bone.

NOTE:
- Avoid long cantilever forces.
- The Cochlear Vistafix System is contraindicated for patients with insufficient bone quality and quantity to provide stability and support for the implant.

Typical set-up for Vistafix 3 two-stage surgery (4 mm)

Stage 1
- 93100 VXI300 Implant
- 92994 VXA300 Abutment 3.5 mm
- 92995 VXA300 Abutment 4.5 mm
- 92996 VXA300 Abutment 6 mm
- 92997 VXA300 Healing Abutment 7.5 mm
- 90802 Healing cap Ø14 mm
- 92907 Cover screw conical for Vistafix VXI300 Implant

Stage 2
- 92908 VXA300 Healing Abutment
- 92910 VXI300 Healing Abutment
- 92914 VXI300 Abutment 3.5 mm
- 92915 VXI300 Abutment 4.5 mm
- 92916 VXI300 Abutment 6 mm
- 92917 VXI300 Abutment 7.5 mm
- 90802 Healing cap Ø14 mm

Typical set-up for Vistafix 3 one-stage surgery (4 mm)
Bar or magnet retention

Bar construction

A bar construction with clips is one option for retaining the prosthesis with a strong, secure connection. Ferro-magnetic components need to be removed prior to MRI scanning. For most auricular prostheses it is possible to choose a bar construction.

Magnetic attachment

In cases where space is limited, where cleaning under the bar would be difficult, or where the patient has reduced motor skills, a magnetic attachment* can be an alternate retention solution. If magnets are used, a magnacap attached to an abutment is preferable, compared to a magnabutment mounted directly on the implant. This is because it is not possible to apply a counter torque when attaching the magnabutment to the implant. Magnabutments are a contraindication to MRI. After removal of the magnabutments it is safe to perform MRI (up to 3T).

BAR CONSTRUCTION

- Silicone
- Acrylic plate
- Clips
- Bar
- Gold cylinder
- Abutment
- Implant

MAGNETS

- Silicone
- Acrylic plate
- Magnet*
- Magnacap*
- Magnabutment*
- Abutment
- Implant
- Implant

* See www.technovent.com for more information on magnetic attachments such as magnets, magnacaps and magnabutments.
Vistafi x 3 System — Retention component guide

<table>
<thead>
<tr>
<th>BAR RETENTION</th>
<th>MAGNET RETENTION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD542 Clip abutment Ø2 mm</td>
<td>ML2-ML-S Auricular magnet</td>
</tr>
<tr>
<td>S0446 or S0448 Cotter Ø2 x 50 mm Ø2 x 100 mm</td>
<td>MD-S/M2-S/M2L-S/ML2-S Prosthesis magnet*</td>
</tr>
<tr>
<td>92142 VXA300 Abutment 3.5 mm</td>
<td>92994 VXA300 Abutment 4.5 mm</td>
</tr>
<tr>
<td>93102 Gold cylinder Ø2 mm</td>
<td>90842 Gold cylinder Ø2 x 50 mm</td>
</tr>
<tr>
<td>92999 Gold screw 4 mm for Unigrip Vistafi x 3 System</td>
<td>90448 Gold screw 9 mm for Unigrip Vistafi x 3 System</td>
</tr>
</tbody>
</table>

Vistafi x 3 System — Instrument and component guide

PATIENT COMPONENTS

<table>
<thead>
<tr>
<th>VXA300 Implants</th>
<th>VXI300 Implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>92994</td>
<td>93100</td>
</tr>
<tr>
<td>92995</td>
<td>93101</td>
</tr>
<tr>
<td>92996</td>
<td>93102</td>
</tr>
<tr>
<td>92997</td>
<td>93103</td>
</tr>
</tbody>
</table>

ASSOCIATED INSTRUMENTS

<table>
<thead>
<tr>
<th>FOR INSERTION</th>
<th>FOR TIGHTENING</th>
<th>FOR COUNTER TORQUE</th>
<th>FOR HEALING CAP</th>
<th>FOR HEALING ABUTMENT</th>
<th>IMPORTANT Only the listed guide drills are compatible with the Vistafi x 3 System implants. The guide drill and widening drills CANNOT be used with the prior generation Vistafi x implants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0160 VXA300 implant 3.5 mm</td>
<td>S0155 VXA300 implant 4.5 mm</td>
<td>S0165 VXA300 implant 6 mm</td>
<td>S0170 VXA300 implant 7.5 mm</td>
<td>S0180 VXA300 implant 9 mm</td>
<td>S0190 VXA300 implant 10 mm</td>
</tr>
<tr>
<td>S0160 VXA300 implant 3.5 mm</td>
<td>S0155 VXA300 implant 4.5 mm</td>
<td>S0165 VXA300 implant 6 mm</td>
<td>S0170 VXA300 implant 7.5 mm</td>
<td>S0180 VXA300 implant 9 mm</td>
<td>S0190 VXA300 implant 10 mm</td>
</tr>
<tr>
<td>S0160 VXA300 implant 3.5 mm</td>
<td>S0155 VXA300 implant 4.5 mm</td>
<td>S0165 VXA300 implant 6 mm</td>
<td>S0170 VXA300 implant 7.5 mm</td>
<td>S0180 VXA300 implant 9 mm</td>
<td>S0190 VXA300 implant 10 mm</td>
</tr>
<tr>
<td>S0160 VXA300 implant 3.5 mm</td>
<td>S0155 VXA300 implant 4.5 mm</td>
<td>S0165 VXA300 implant 6 mm</td>
<td>S0170 VXA300 implant 7.5 mm</td>
<td>S0180 VXA300 implant 9 mm</td>
<td>S0190 VXA300 implant 10 mm</td>
</tr>
</tbody>
</table>

ADDITIONAL INSTRUMENTS

- SD542 Drill indicator for WS-75 and Osscora
- S0155 Machine screwdriver Unigrip 25 mm
- S0160 Speedometer for Vistafi x 3 System
- S0170 Vistafi x 3 System

* See www.technovent.com for more information on magnetic attachments such as magnets, magnacaps and magnabutments
Prior generation Vistafix — Retention component guide

BAR RETENTION

- Ø2 x 100 mm Gold cylinder
- Ø2 mm Gold screw

MAGNET RETENTION

- Ø2 x 50 mm Gold cylinder
- 90446 or 3 mm Unigrip
- 90780 or 7 mm Magnacap

STANDARD ABUTMENTS FOR PRIOR GENERATION VISTAFIX IMPLANTS

- Ø14 mm Healing cap
- Ø3.75 mm Prosthesis healing abutment
- Ø3.75 mm Prosthesis space w. internal hexagon

ASSOCIATED INSTRUMENTS

- Multi wrench with ISO adapter
- Machine screwdriver
- Countersink Ø3.3 mm

IMPORTANT

- Only the listed guide drills are compatible with the prior generation Vistafix implants. The guide drill and countersink drills CANNOT be used with the Vistafix 3 System implants.

Prior generation Vistafix — Instrument and component guide

PATIENT COMPONENTS

- Healing cap
- Abutment clamp

ASSOCIATED INSTRUMENTS

- Screwdriver for internal hexagon
- Screwdriver for internal hexagon long

FOR TIGHTENING

- Multi wrench with ISO adapter

FOR COUNTER TORQUE

- Machine screwdriver abutment

FOR HEALING CAP

- Multi wrench with ISO adapter

FOR HEALING ABUTMENT

- Machine screwdriver abutment

ADDITIONAL INSTRUMENTS

- Drill indicator for WS-75 and Osscora
- Machine screwdriver Unigrip 25 mm

See www.technovent.com
Vistafix one-stage surgery

In the one-stage procedure, implant, healing abutment and healing cap, or alternatively implant, abutment, and healing cap are placed at the same time.
1. PREPARE THE SITE

• The position of the implants should be selected in collaboration with the anaplastologist and/or prosthetic team for the best aesthetic and functional outcome. The angle of the implant after placement is an important consideration, as it could influence the prosthetic outcome.

• The implant sites should be carefully marked, using a thin needle or surgical ink, down to the bone. The surgeon should use a template, prepared by the anaplastologist, to mark the implant sites prior to the surgical procedure.

• To obtain a good depth for the auricular prosthesis, the retention bar should be located under the anti-helix part of the prosthesis; therefore the implants should also be located directly under the anti-helix (Fig. 1).

• Two implants are often sufficient for satisfactory retention, though three may be needed for optimal retention. The ideal position is approximately 20 mm from the center of the external ear canal opening or, in the case of the atretic ear, the anticipated opening. On the patient’s left side, the positions are at 4 o’clock and 1:30 (Fig. 2a). On the right side the corresponding positions are at 8 o’clock and 10:30 (Fig. 2b). When using 3 implants, placing the implants at 1:30, 3:00 and 4:30 (for left ear), and 10:30, 9:00 and 7:30 (for a right ear) is appropriate. The distance between the implants should be at least 10 mm to facilitate cleaning around the abutment.

2. MAKE THE INCISION

• Make an incision approximately 10 mm behind the implant site. Perform a sharp dissection down to the periosteum. When the periosteum is exposed, a cruciate incision is made (Fig. 3) in the periosteum at each implant site. Raise the edges with skin hooks.

NOTE: Electrocoagulation should be used with care in order to minimize tissue trauma.

3. REDUCE SUBCUTANEOUS TISSUE

There are three prerequisites for establishing and maintaining a reaction-free skin-penetration. First, the skin surrounding the implants should be hairless to help keep the implant site clean. Second, all subcutaneous tissue may be removed in order to minimize skin mobility in relation to the implant. Third, the soft tissue should be carefully trimmed to its innermost layer (periosteum), and the flap then sutured down to the periosteum.

Attention to detail during skin preparation is vital to avoid tissue and hair regrowth, which can increase the risk of irritation or wound healing problems around the abutment.

• Scrape hair from the flap (Fig. 4).

• Remove all subcutaneous tissue with hair follicles under the skin flap to minimize skin mobility in relation to the implant (Fig. 5).

• Remove subcutaneous tissue at the periphery of the flap holding the blade parallel to the skin (Fig. 6). When the depth of the tissue is about 6 mm it is advisable to remove soft tissue approximately 20 mm outwards from the flap edges. The thicker the subcutaneous tissue is, the larger the reduction should be.

• Trim the soft tissue down to the innermost layer (periosteum) to avoid regrowth of tissue and to avoid mobility. However, the periosteum must remain intact to maintain the blood supply required for healing (Fig. 7).

4. DRILL WITH THE GUIDE DRILL

NOTE: Drilling and placing the implant are generally done in one sequence. It is recommended to start with the inferior implant due to the higher likelihood of air cells in this area. Section 3-5 in this guide illustrate the drilling and placement of the superior implant. Be certain to drill at an angle perpendicular to the bone surface. The drill indicator facilitates correct drill orientation and should be used during drilling and implant placement.

• Set the drill unit to the high-speed setting: 2,000 rpm (program 2 for the Osscora surgical set) (Fig. 8).

• A continuous manual irrigation drip is used in conjunction with the guide drill.

• Begin drilling with the guide drill and 3 mm spacer (Fig. 9).

• While drilling, move the burr up and down and slightly enlarge the hole to ensure visual inspection, and that the coolant reaches the tip of the drill. Cooling is critical, as an osteocyte will die after 1 minute at 42°C.

• Palpate the base of the implant site repeatedly for bone presence with the dissector and perform visual inspection (Fig. 10).

• If the bone has adequate thickness, remove the white spacer on the guide drill and continue drilling to a depth of 4 mm (Fig. 11). If, however, soft tissue is encountered when drilling with the white spacer, drilling should be terminated and the procedure completed with the 3 mm components.

NOTE: Observe the quality and quantity of the cortical bone and spongiosa air cells during initial penetration. Proceed with care to avoid penetrating the wall of the sigmoid sinus or damaging the dura mater.
5. DRILL WITH THE WIDENING DRILL

The next step is to widen the hole to the correct diameter:

- Keep the drill unit on the high-speed setting: 2,000 rpm (program 2 for the Osscora surgical set) (Fig. 12).
- Use either a 3 or 4 mm widening drill, depending on the depth reached with the guide drill (Fig. 13).
- A continuous manual irrigation drip is used in conjunction with the widening drill.

IMPORTANT: If using the prior generation Vistafi x Implant, it is imperative that you use only the countersink appropriate for that product (part number 90416 or 90417). The widening drill for the Vistafi x 3 System is NOT compatible with the prior generation Vistafi x Implant.

- Move the widening drill up and down during drilling to ensure that the coolant reaches the tip of the drill. Only use up and down movements, do not make the hole larger than the actual drill size.
- If necessary, use the dissector to remove bone chips from the drill flutes.
- When reaching the bone surface, use the widening drill to create a small countersink in the bone (maximum 0.5 mm) (Fig. 14, 15). The widening drill for the Cochlear Vistafi x 3 System has been designed to facilitate countersinking. When a 0.5 mm countersink is achieved, countersinking is complete. However, use caution not to press too hard, especially in soft bone to avoid excessive countersinking.

IMPORTANT:
- DO NOT use the guide drill after the widening drill since the guide drill stop diameter is smaller than the site.
- The blunt tip of the widening drill minimizes the risk of damage to tissue at the base of the implant site.
- Be very careful not to over-widen the section that will contain the implant threads or you risk reduction of implant stability.
- When the surface of the bone is uneven, the countersink allows the flange of the titanium implant to have maximum contact with the bone surface.

6. PLACE THE IMPLANT

- Set the drill to the torque setting (program Implant installation for the Osscora surgical set: Program 3, indicated by the screw icon) (Fig. 16).
- Set the torque limit to suit the quality of the bone.

<table>
<thead>
<tr>
<th>BONE QUALITY</th>
<th>SUGGESTED TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact bone</td>
<td>40-50 Ncm</td>
</tr>
<tr>
<td>Compromised or soft bone</td>
<td>20-30 Ncm</td>
</tr>
</tbody>
</table>

- Open the ampule upright by unscrewing the lid so the bottom section can be placed in the holder on the component tray (Fig. 17).
- If using the Vistafi x 3 System, pick up the implant using the implant inserter (Fig. 18). It is easier to fit the implant inserter in the implant if the drill motor is running.
- If using the prior generation Vistafi x Implant, match the connection to handpiece with the square of top of the pre-mounted fixture mount.
- Place the implant in the bone without irrigation until two complete rotations are achieved with cutting flutes in the bone. Irrigation at this time would result in cooling solution being compressed into the marrow spaces in the bone by the implant (Fig. 19).
- Once two complete rotations of the implant have occurred in bone, continue implant placement with drip irrigation.
- The Osscora surgical set stops automatically and beeps when the preset torque is reached.
- Carefully lift up on the handpiece to remove the implant inserter or fixture mount.

NOTE:
- The implant must not come into contact with anything other than the ampule and implant inserter before being placed in the bone. The surface must be kept free from contamination for successful osseointegration.
- If the implant enters the implant site incorrectly, press reverse on the drill unit and unscrew the implant. Then find the correct angle and re-insert the implant. This should be attempted only once.
- If the drill stops early — before the flange of the implant is seated in the countersunk bone — reverse one thread and increase the torque with the +/- on the control panel of the drill system.
- Be very careful not to loosen the implant through a lever arm effect. The risk of this occurring is quite high if the implant site consists of a thin layer of bone combined with loose marrow and cancellous bone tissue.
- When placing the implant in hard bone, slight pressure may need to be applied during the initial insertion.
- The implant can be inserted manually with the multi wrench and the implant inserter. Rotate the whole multi wrench shaft clockwise (“IN” facing upwards) (Fig. 19a).

7. CLOSE AND SUTURE

- Suture the edges around the flap down to the periosteum in order to hold the tissue in place.
- Lay the flap back and suture it down (Fig. 20).
8. CONNECT HEALING ABUTMENTS OR ABUTMENTS

Healing abutments are recommended for use for all cases at the initial surgery to facilitate proper healing, with permanent abutments placed at a later date at the clinic. This enables the tissue to heal properly, and for the length of the final abutment to be selected after healing occurs.

The healing abutments and abutments come with an abutment holder (white plastic) to facilitate placement (Fig. 22).

- Using a 4 mm biopsy punch, make incisions through the skin exactly over the positions of the implants (Fig. 23).
- Pick up the healing abutment or abutment from the sterile packaging and place it into the implant. Make sure the abutment is correctly fitted in the tri-lobe connection of the implant otherwise the abutment screw cannot be tightened. If using the prior generation Vistafi x System, be sure to fit the abutment onto the hexagon head of the implant.
- Hand-tighten the screw partially to secure it (Fig. 24). The abutment holder is then removed by snapping it off of the abutment.
- Set the drill to the torque setting (program Implant installation for the Osscora surgical set) and set the torque limit to 25 Ncm if using the Vistafi x 3 System, and 20 Ncm if using the prior generation Vistafi x Implant (Fig. 25).
- Finalize the tightening of the abutment screw to 25 Ncm for the Vistafi x 3 System (20 Ncm with prior generation Vistafi x Implants) with the machine screwdriver abutment, using the counter torque wrench to prevent placing torque forces on the implant (Fig. 28).
- For manual tightening, tighten the abutment screw to 25 Ncm for the Vistafi x 3 System (20 Ncm with prior generation Vistafi x Implants) using the Multi wrench (“IN” facing upwards) with the machine screwdriver abutment (Fig. 27, 28). Use the counter torque wrench as counter torque. If using the prior generation Vistafi x System, use the abutment clamp as counter torque.

NOTE: The counter torque wrench or abutment clamp should always be used to avoid torque force on the implant.

9. PLACE THE DRESSING AND HEALING CAPS

Always place the dressing on the skin to ensure skin-bone contact and to prevent a hematoma formation.

9A. HEALING ABUTMENTS

- If healing abutments are used, place a separate dressing around the healing abutments (Fig. 29).
- Place a mastoid dressing (Fig. 33).

9B. ABUTMENTS

- Place the healing cap on the abutment and hand-tighten the screw using the Unigrip screwdriver (Fig. 30).
- The healing cap can be placed either before or after the dressing. This is determined by the dressing type (Fig. 31, 32).
- Place a mastoid dressing (Fig. 33).
Vistafix two-stage surgery

When using the two-stage procedure, auricular tags and remnants are often left in place at the first stage and not removed until the second operation. Subcutaneous tissue reduction is often carried out at stage two of the procedure to ensure successful implantation prior to the tissue reduction.
First stage of the two-stage surgery

1. PREPARE THE SITE

- The position of the implants should be selected in collaboration with the anaplastologist and/or prosthetic team for the best aesthetic and functional outcome.
- The implant sites should be carefully marked, using a thin needle or surgical ink, down to the bone. The surgeon should use a template, prepared by the anaplastologist, to mark the implant sites prior to the surgical procedure.

Auricular prosthesis

- To obtain a good depth for the auricular prosthesis the retention bar should be located under the anti-helix part of the prosthesis, therefore the implants should also be located directly under the anti-helix (Fig. 1).
- Two implants are often sufficient for satisfactory retention, though three implants may be needed for optimal retention. The ideal position is approximately 20 mm from the center of the external ear canal opening or, in the case of the atretic ear, the anticipated opening. On the patient's left side, the positions are at 4 o'clock and 1:30. On the right side the corresponding positions are at 8 o'clock and 10:30 (Fig. 2b). When using 3 implants, placing the implants at 1:30, 3:00 and 4:30 (for left ear), and 10:30, 9:00 and 7:30 (for a right ear) is appropriate. The distance between the implants should be at least 10 mm to facilitate cleaning around the abutment.

Midface and orbital prosthesis

- When placing implants in the orbit and in the midface it is very important that the surgeon performs the osseointegration surgery. The position of the implants should be chosen in collaboration with the anaplastologist, taking into account the position and contour of the prosthesis.

2. MAKE THE INCISION

- Make an incision approximately 10 mm behind the implant site. Perform a sharp dissection down to the periosteum at each implant site.

3. DRILL WITH THE GUIDE DRILL

- Set the drill unit to the high-speed setting, 2,000 rpm (program 2 for the Osscora surgical set) (Fig. 4).
- A continuous manual irrigation drip is used in conjunction with the widening drill.
- Begin drilling with the guide drill and 3 mm spacer (Fig. 5).
- While drilling, move the burr up and down and slightly enlarge the hole to ensure visual inspection, and that the coolant reaches the tip of the drill. Cooling is critical, as an osteocyte will die after 1 minute at 42°C.
- Palpate the base of the implant site repeatedly for bone presence with the dissector and perform visual inspection (Fig. 6).
- The implant sites should be carefully marked, using a thin needle or surgical ink, down to the periosteum. When the periosteum is exposed, a cruciate incision is made around the abutment.3
- IMPORTANT: Electrocoagulation should be used with care in order to minimize tissue trauma.

4. DRILL WITH THE WIDENING DRILL

- The next step is to widen the hole to the right diameter.
- Keep the drill unit on the high-speed setting, 2,000 rpm (program 2 for the Osscora surgical set) (Fig. 4).
- Use either a 3 or 4 mm widening drill, depending on the depth reached with the guide drill (Fig. 6).
- If necessary, use the dissector to remove bone chips frequently from the drill flutes.
- When the bone has adequate thickness, remove the white spacer on the guide drill and continue drilling to a depth of 4 mm (Fig. 7). If, however, soft tissue is encountered when drilling with the white spacer, drilling should be terminated and the procedure completed with the 3 mm components.
- IMPORTANT: Be very careful not to over-widen the section that will contain the implant threads or you risk losing initial implant stability.

- Move the widening drill up and down during drilling to ensure that the coolant reaches the tip of the drill. Only use up and down movements, do not make the hole larger than the actual drill size.
- If necessary, use the dissector to remove bone chips frequently from the drill flutes.
- When the bone surface is reached, use the widening drill to create a small countersink in the bone (maximum 0.5 mm) (Fig. 9, 10). The widening drill for the Cochlear Vistafix 3 System is compatible with the prior generation Vistafix implant.

- While drilling, move the burr up and down and slightly enlarge the hole to ensure visual inspection, and that the coolant reaches the tip of the drill. Cooling is critical, as an osteocyte will die after 1 minute at 42°C.
- Set the drill unit to the high-speed setting, 2,000 rpm (program 2 for the Osscora surgical set) (Fig. 4).
- A continuous manual irrigation drip is used in conjunction with the widening drill.
- Begin drilling with the guide drill and 3 mm spacer (Fig. 5).
- While drilling, move the burr up and down and slightly enlarge the hole to ensure visual inspection, and that the coolant reaches the tip of the drill. Cooling is critical, as an osteocyte will die after 1 minute at 42°C.
- Palpate the base of the implant site repeatedly for bone presence with the dissector and perform visual inspection (Fig. 6).
- If the bone has adequate thickness, remove the white spacer on the guide drill and continue drilling to a depth of 4 mm (Fig. 7). If, however, soft tissue is encountered when drilling with the white spacer, drilling should be terminated and the procedure completed with the 3 mm components.

- IMPORTANT: Be very careful not to over-widen the section that will contain the implant threads or you risk losing initial implant stability.

- IMPORTANT: DO NOT use the guide drill after the widening drill since the guide drill stop diameter is smaller than the site.
- The blunt tip of the widening drill minimizes the risk of damage to tissue at the bottom of the hole.
- Be very careful not to over-widen the section that will contain the implant threads or you risk losing initial implant stability.
- When the surface of the bone is uneven, the countersink allows the flange of the titanium implant to have maximum contact with the bone surface.
Second stage of the two-stage surgery

1. REDUCE SUBCUTANEOUS TISSUE

There are three prerequisites for establishing and maintaining a reaction-free skin-penetration. First, the skin surrounding the implants should be hairless to help keep the implant site clean. Second, all subcutaneous tissue may be removed in order to minimize skin mobility in relation to the implant. Third, the soft tissue should be carefully trimmed to its innermost layer (periosteum), and the flap then sutured down to the periosteum.

Attention to detail during skin preparation is vital to avoid tissue and hair regrowth, which can increase the risk of irritation or wound healing problems around the abutment.

- Scrape hair from the flap (Fig. 17).
- Remove all subcutaneous tissue with hair follicles under the skin flap to minimize skin mobility in relation to the implant (Fig. 18).
- Remove subcutaneous tissue at the periphery of the flap holding the blade parallel to the skin (Fig. 19). When the depth of the tissue is about 6 mm it is advisable to remove soft tissue approximately 20 mm outwards from the flap edges. The thicker the subcutaneous tissue is, the larger the reduction should be.
- Trim any remaining periosteum that can be raised down to the innermost layer to avoid regrowth of tissue and to avoid mobility. However, the periosteum must remain intact to maintain the blood supply required for healing (Fig. 20).
- Suture the flap down to the periosteum at the base of the skin flap.

2. REMOVE THE COVER SCREW

- Using a 4 mm biopsy punch, make incisions through the skin exactly over the positions of the implants (Fig. 23).
- Lift up the flap and remove the cover screws using the screwdriver Unigrip 95 mm (Fig. 22).
- Lay the flap back and suture it down (Fig 23).

5. PLACE THE IMPLANT

- Set the drill to the torque setting (program Implant installation for the Osscora surgical set: Program 3, indicated by the screw icon) (Fig. 16).
- Set the torque limit to suit the quality of the bone.

<table>
<thead>
<tr>
<th>BONE QUALITY</th>
<th>SUGGESTED TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact bone</td>
<td>40-50 Ncm</td>
</tr>
<tr>
<td>Compromised or soft bone</td>
<td>20-30 Ncm</td>
</tr>
</tbody>
</table>

- Open the ampule upright by unscrewing the lid so the bottom section can be placed in the holder on the component tray (Fig. 12).
- If using the Vistafi x 3 System pick up the implant using the implant inserter (Fig. 13). It is easier to fit the implant inserter in the implant if the drill motor is running.
- If using the prior generation Vistafi x Implant, match the connection to handpiece with the square of top of the pre-mounted fixture mount.
- Place the implant without irrigation until the first threads of the implant are well within the bone. Irrigation at this time would result in cooling solution being compressed into the narrow spaces in the bone by the implant (Fig. 14).
- Once in the bone, continue implant placement with irrigation.
- The Osscora surgical set stops automatically and beeps when the preset torque is reached.
- Carefully lift up the handpiece to remove the implant inserter or connection to handpiece from the implant.

6. PLACE THE COVER SCREW

Inserting a cover screw protects the internal threads of the implant from tissue and bone overgrowth during the healing phase.

- Place and hand tighten the cover screw using the screwdriver Unigrip 95 mm (Fig. 15).
- Suture down the periosteum over the implant with resorbable sutures.
- Suture the flap into position (Fig. 16).
- Place a mastoid dressing.

NOTE:
- The implant must not come into contact with anything other than the ampule and implant inserter before being placed in the bone. The surface must be kept free from contamination for successful osseointegration.
- If the implant enters the implant site incorrectly, press reverse on the drill unit and unscrew the implant. Then find the correct angle and re-insert the implant. This should be attempted only once.
- If the drill stops early — before the flange of the implant is seated in the countersunk bone — reverse one thread and increase the torque with the +/- on the control panel of the drill system.
- Be very careful not to loosen the implant through a lever arm effect. The risk of this occurring is quite high if the implant site consists of a thin layer of bone combined with loose marrow and cancellous bone tissue.
- When placing the implant in hard bone, slight pressure may need to be applied during the initial insertion.
- The implant can be inserted manually with the multi wrench and the implant inserter. Rotate the whole multi wrench shaft clockwise (“IN” facing upwards) (Fig. 14a).

BONE QUALITY SUGGESTED TORQUE

<table>
<thead>
<tr>
<th>BONE QUALITY</th>
<th>SUGGESTED TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact bone</td>
<td>40-50 Ncm</td>
</tr>
<tr>
<td>Compromised or soft bone</td>
<td>20-30 Ncm</td>
</tr>
</tbody>
</table>
3. CONNECT HEALING ABUTMENTS OR ABUTMENTS

Healing abutments are typically used during the initial healing stage, with the permanent abutments placed at a later date at the clinic. This enables the tissue to heal properly before the length of the final abutment is chosen.

If permanent abutments are placed at this stage as an alternative to healing abutments, the tissue will alter during healing, and this could mean that a different height abutment may be needed before making the final prosthesis.

The healing abutments and abutments come with an abutment holder (white plastic) to facilitate placement (Fig. 25).

- Pick up the healing abutment or abutment from the sterile packaging and place it into the implant. Make sure the abutment is correctly fitted in the tri-lobe connection of the implant otherwise the abutment screw cannot be tightened. If using the prior generation Vistafix System, be sure to fit the abutment onto the hexagon head of the implant.
- Hand-tighten the screw partially to secure it (Fig. 26). The abutment holder is then removed by snapping it off of the abutment.
- Set the drill to the torque setting (program Implant installation for the Osscora surgical set) and set the torque limit to 25 Ncm if using the Vistafix 3 System, and 20 Ncm if using the prior generation Vistafix implant (Fig. 27).
- Finalize the tightening of the abutment screw to 25 Ncm for the Vistafix 3 System (20 Ncm with prior generation Vistafix implants) with the machine screwdriver abutment, using the counter torque wrench to prevent placing torque forces on the implant (Fig. 28).
- For manual tightening, tighten the abutment screw to 25 Ncm using the Multi wrench (“IN” facing upwards) with the machine screwdriver abutment (Fig. 29, 30). Use the counter torque wrench as counter torque.

NOTE: The counter torque wrench or abutment clamp should always be used to avoid torque forces on the implant.

4. PLACE THE DRESSING AND HEALING CAPS

Always place the dressing on the skin to ensure skin-bone contact and to prevent a hematoma formation.

4A. HEALING ABUTMENTS

- If healing abutments are used, place a dressing around the healing abutments (Fig. 31).
- Place a mastoid dressing (Fig. 35).

4B. ABUTMENTS

- Place the healing cap on the abutment and hand-tighten the screw using the Unigrip screwdriver (Fig. 32).
- The healing cap can be placed either before or after the dressing. This is determined by the dressing type (Fig. 33, 34).
- Place a mastoid dressing (Fig. 35).
Aftercare

Dressing guidelines

<table>
<thead>
<tr>
<th>1 day post-op</th>
<th>5-7 days post-op</th>
<th>10-14 days post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Remove the mastoid dressing.</td>
<td>• Remove the mastoid dressing.</td>
<td>• Remove the mastoid dressing.</td>
</tr>
<tr>
<td>• Leave the dressing and healing cap in situ.</td>
<td>• Leave the dressing and healing cap in situ.</td>
<td>• Leave the dressing and healing cap in situ.</td>
</tr>
<tr>
<td>• Ensure that the patient does not allow any water to come in contact with the wound for 5-7 days after surgery.</td>
<td>• Ensure that the patient does not allow any water to come in contact with the wound for 5-7 days after surgery.</td>
<td>• Ensure that the patient does not allow any water to come in contact with the wound for 5-7 days after surgery.</td>
</tr>
</tbody>
</table>

Patient aftercare instructions

The prosthesis can be worn for all normal activities including swimming and sports. It may be advisable to remove it and wear some protection, for example a headband, over the bar if you take part in contact sports. The prosthesis should be removed when sleeping.

Good hygiene is critical to maintaining normal usage of the prosthesis. Patients who are unable to clean the skin around the abutment need help from their family or caregivers.

In case of infection, cleaning routines should be checked. If infection persists, it may be controlled by applying a course of topical antimicrobial cream to the skin surrounding the abutment. Topical antimicrobial cream may be administered by wrapping ointment-soaked ribbon gauze around the abutment when positioning the healing cap.

Daily care — the abutment area

The area around the abutment should be cleaned on a daily basis to avoid debris build up. A soft cleaning brush (Fig. 1), or non-alcohol wipes (such as unscented wipes) can be used around the base of abutment. The soft cleaning brush (obtained from the clinic) should be changed every 3 months. Cleaning this area is most easily done when the patient takes a bath or takes a shower as plenty of warm water and soap on the area will help to soften any crust that may have developed around the base of the abutment. Any mild soap or shampoo may be used, but some recipients have found anti-dandruff shampoo particularly effective.

Care of the prosthesis

The prosthesis should be cleaned regularly by gently brushing with soap and water. Abrasive powders and bleaches should be avoided. The edges of the prosthesis are very thin, so care must be taken when handling it. If in the early stages following the fitting of the prosthesis there should be regular visits to the outpatient clinic to make sure that all is well. The patient should be instructed to contact a Vistafix health professional if experiencing any persistent irritation, soreness or inflammation around the abutment.

Hair care

Patients who wish to have their hair permed or colored should remove the prosthesis and protect the abutments with a small amount of cotton wool and cling film secured with a small elastic band. This will prevent the solution or dye from irritating the tissue around the abutment. The hair should not be permed or colored until the surgical site is fully healed.
Adjustment of the abutment

Occasionally, the abutment may become slightly loose and need tightening. In the case of persistent soft tissue complications the abutment may need to be replaced. The procedure takes a few minutes and local anesthetic is seldom required.

For abutments that need adjusting, the Multi wrench with ISO adapter, machine screwdriver abutment and counter torque wrench are required. (Fig 1). Insert the ISO adapter in the Multi wrench and then insert the machine screwdriver abutment in the ISO adapter (Fig 2).

When adjusting the abutment, always use the counter torque wrench with the Multi wrench to minimize the load on the implant.

Tighten the abutment

- Tighten the abutment screw to 25 Ncm (20 Ncm with prior generation Vistaﬁx x) using the machine screwdriver abutment and the counter torque wrench as counter torque.

Replace the abutment

- Loosen the abutment screw using the Multi wrench ("OUT" facing upwards) with the machine screwdriver abutment and the counter torque wrench. The ISO adapter can be used as a small handheld screwdriver.
- Clean the skin thoroughly. If needed, let the area heal 1–2 weeks. A cover screw can be used to cover the implant during healing. If needed, punch a new hole with a biopsy punch Ø4 mm.
- Pick up the abutment from the sterile packaging and place it into the implant. If using the Vistaﬁx x 3 System, make sure the abutment is correctly ﬁtted in the tri-lobe connection of the implant; otherwise the abutment screw cannot be tightened.
- Hand-tighten the screw partially to secure it (Fig. 4). The abutment holder is then removed by unspinning it off the abutment.
- Tighten the abutment screw to 25 Ncm (20 Ncm with prior generation Vistaﬁx x) (Fig. 3). Use the counter torque wrench as counter torque.

NOTE:
- The VXA300 Abutments are ONLY compatible with VXI300 Implants (Fig. 5).
- The previous series abutments with hexagonal couplings should be tightened to 20 Ncm (see torque table below).
- The previous series abutments with hexagonal couplings are compatible with the previous Vistaﬁx implants with hexagonal connections. Be sure to ﬁt the abutment onto the hexagon head of the implant (Fig. 6).

Torque table

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>TIGHTENING TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VXA300 Abutments</td>
<td>25 Ncm</td>
</tr>
<tr>
<td>Previous series abutments</td>
<td>20 Ncm</td>
</tr>
<tr>
<td>with hexagonal coupling</td>
<td></td>
</tr>
</tbody>
</table>

Complications and troubleshooting

The success rate for Vistaﬁx surgery is very high, however, unexpected situations, both intra-operatively and postoperatively, may occur. Below is a list of potential complications and recommendations for handling them. Importantly, the patient must be informed of all complications related to safety and effectiveness prior to surgery.

The regulation of medical devices requires the manufacturer to report adverse events to the appropriate authority. Should such an incident occur, notify your local Cochlear offiﬁce or its offiﬁcial distributor as soon as possible.

Complications during surgery

The implant becomes stuck during insertion

This can occur if the implant alignment is incorrect. Set the drill unit to reverse mode before unscrewing the implant. Find the correct alignment and re-insert the implant. If the same happens again, select a new implant site nearby.

The implant continues to rotate when the flange is down

This happens most often when dealing with compromised and soft bone, and when the torque is set too high in relation to the quality of the bone. Prepare a new implant site at least 5 mm from the ﬁrst site and then place the implant with lower torque.

Exposure of dura mater and perforation of the sigmoid sinus

Although rare, a mild CSF or blood leak can occur during guide hole drilling. If this occurs, it is a low pressure system that can be sealed easily. For a patient with good bone volume, place the implant to seal the leak. If the bone is too thin, choose a new implant site at least 5 mm from the original site (as close as possible as long as the two sites don’t intersect), after sealing the leak with soft tissue or bone wax.

Subdural hematoma

This condition, caused by venous bleeding under the dura, is rare and typically slow developing. It is not often identiﬁed during surgery, but is more likely caused by direct trauma and will develop gradually over time and give general neurological symptoms. Should this occur, a CT or MRI can be used to verify the diagnosis. Treat this condition according to general practice.

Postoperative soft tissue complications

Inflammation and infection around the abutment

Poor or excessive personal hygiene is a common reason for skin irritation, but irritation could also be due to movement of the skin caused by a too thick soft tissue layer, a loose-abutment, or insufﬁcient osseointegration.

If the skin around the abutment becomes inﬂamed, thoroughly clean the entire implant site and, if appropriate, apply antimicrobial ointment/cream. Provide the patient with the appropriate aftercare instructions.

Persistent soft tissue complications

When patients have a persistent problem around the abutment, remove the abutment and clean the skin thoroughly. Perform a culture before providing the appropriate antimicrobial and anti-inﬂammatory treatment. A steroid ointment can also be used. Allow the area to heal for 1–2 weeks before placing a new abutment.
Skin overgrowth
If the skin grows back to its original thickness, skin reduction surgery is indicated. In some patients (predominantly male teenagers) an inflammatory reaction may occur and result in complete overgrowth of the abutment by soft tissue. Treatment with topical steroid cream or a steroid injection may be considered.

Persistent skin overgrowth
Use a longer abutment if a patient has persistent regrowth of the subcutaneous tissue, which is common in patients with very thick skin.

Keloids
In the case of keloids that do not subside over time, place a silicone disc over the keloid and keep pressure on the silicone disc for 7–10 days.

Skin flap necrosis
Skin flap necrosis can occur within the immediate postoperative period. Simply remove any necrotic tissue and apply a mild antibiotic ointment. Systemic antibiotic treatment is an alternative. Major or even total flap necrosis will often heal, but this could take several months. A skin graft is seldom required.

Postoperative numbness — parasthesia
Postoperative numbness after tissue reduction may occur. Usually this will disappear after a few months. For those who have had significant amounts of subcutaneous tissue removed this may be permanent.

Postoperative bone tissue complications

Implant loss
Potential causes of the failure of osseointegration include lack of adequate bone quantity/quality, trauma, infection, generalized diseases and surgical complications.

Bony overgrowth
The potential for a bony overgrowth around the implant increases in children who are implanted. Removal of some bone at the time of soft tissue revision surgery will allow maximum clearance between the skin and the lateral surface of the abutment.

Pain when touching the abutment
If the patient experiences pain when touching the abutment, there may be an increased risk of implant loss. In most cases, the loose implant can be removed and another one placed in adjacent bone. In others, the implant must be removed and the defect then carefully curetted and filled with blood coagulates. In most cases adjacent bone is available and suitable for the placement of another implant.

Bone infection leading to osteonecrosis
This is seen almost exclusively in patients with previously irradiated implant sites. It is most easily avoided by administering hyperbaric oxygen (HBO) before and after surgery and by striving for minimal tissue damage during surgery.

Special considerations

MRI and magnetic fields
Be certain to caution patients about procedures such as MRI and any others involving magnetic fields. Patients fitted with facial or auricular prostheses can undergo an MRI, as long as the prosthesis and the bar construction, any fixation magnets, magnabutments or magnacaps attached to the implants are removed prior to the procedure. This will eliminate the risk of implant loss and minimize the artifacts. The implant itself and the abutment are not ferromagnetic and will not cause any problems for the patient during an MRI (up to 3T).

Radiation therapy
If a patient already has implants placed, and is scheduled for radiation therapy around the implant areas, the abutments should be removed but implants could be left in place to allow healing of the site before radiation is performed. A cover screw can be used to cover the implant until the abutment is replaced.

Sporting activities
It is important to educate the parents and caregivers about the need for helmets and other safety precautions during sporting activities to minimize traumatic events. Traumatic implant loss can still occur across all age groups.
Making and fitting the prosthesis
1. MAKE AN IMPRESSION OF THE IMPLANT SITE

- Clean the skin around the abutments carefully.
- Check the abutment screw and tighten if needed (Page 36).
- Pack the external ear canal opening with gauze to prevent penetration by the impression material.
- Attach impression copings with guide pins to the abutments (Fig. 1).
- Apply a thin layer of flexible, light body silicone around the copings and over the entire area required for making the prosthesis (Fig. 2).
- Apply a second layer of solid or heavy body impression silicone to secure the impression copings in position and to stabilize the impression (Fig. 3).

2. PREPARE A WORKING MODEL

- When the silicone material has set in the impression of the implant site, remove the impression carefully.
- Unscrew the guide pins from the abutments and carefully remove the impression (Fig 4).
- Attach abutment replicas to the impression copings by using the guide pins (Fig 5a).
- Cast the impression with the copings and replicas in dental stone (Fig. 5b).
- Let the dental stone dry, and separate the impression from the cast by loosening the guide pins.

An exact working model of the patient’s defect area has now been fabricated, with the abutment replicas in exactly the same position, direction and height as the skin-penetrating abutments.

3. MAKE AN IMPRESSION OF THE OPPOSITE EAR (WHEN POSSIBLE)

In order to facilitate the sculpturing of the prosthesis, an impression of the opposite ear can be taken. This is then used as a companion during sculpturing of the prosthetic ear (Fig. 6).

- Apply impression silicone around the opposite ear and let it cure.
- Remove the impression and pour dental stone in the impression.
4. DESIGN THE FRAMEWORK

At this stage, the design of the framework is determined and a drawing of the shape of the bar construction is made.

- Place the gold cylinders on the abutment replicas of the working model (Fig. 7).
- Tighten the gold screws to 10 Ncm using the Multi wrench with ISO adapter and the machine screwdriver Unigrip.
- Cut and grind a Ø2 mm gold alloy bar so that it stretches between and beyond the abutments with an appropriate shape (Fig. 8).

NOTE: It is desirable to place the bar under the anti-helix part of the ear (Fig. 8). In order to minimize torque on the implants the bar should not extend more than 8–10 mm beyond the abutments (Fig. 9).

- Attach the bar to the gold cylinders with sticky wax or acrylic (Fig. 10).
- Remove the bar construction from the working model and embed it in the investment in preparation for soldering (Fig. 10).
- Solder the bar to the gold cylinders. A welding technique can also be used.
- Check the bar construction carefully on the working cast and on the patient for a perfect fit.

5. MAKE THE ACRYLIC PLATE

- Place the bar construction on the working model and position the retention clips on the bar.
- Make an undercut block with wax to prevent the finished acrylic plate from touching the skin. Make sure that the sides of the clips are protected by wax from the acrylic resin. This will facilitate their activation and adjustment (Fig. 11).
- Pour auto-polymerizing acrylic resin over the bar and clip construction (Fig. 12). Make the acrylic plate as flat as possible so as not to compromise the shape of the prosthesis.

TIP: Reinforce the plate with fibers to minimize the risk of breakage.

- Try the acrylic resin plate on the patient to verify fit and contours.

6. SCULPT AND FIT THE WAX MODEL

- Sculpt a wax model of the prosthesis (Fig. 13).

TIP: If available, use the impression of the opposite ear as a guide when sculpting the wax model or scan the opposite plaster ear and reverse.

- Soften the wax model and position the wax ear onto the acrylic plate on the patient (Fig. 14).
- Make sure that there is a 2 mm space between the skin and the back of the plate/prosthesis. The skin must have access to air in order to prevent irritation due to moisture accumulation.
- Check the model’s fit from all angles with the patient’s mouth open and closed, moving their face and standing up/sitting down.
- The anterior margin of the wax ear should be made very thin.

7. MAKE THE PLASTER MOLD

- Place abutment replicas onto the gold cylinders of the bar construction and position the bar and abutment replicas into the clips of the acrylic plate (Fig. 15).
- Fabricate a three-piece plaster mold (Fig. 16). Embed the fitting side of the wax ear and bar into plaster. Separate the plaster with a separating agent. Make key holes in the mold to ensure correct fit between the parts. Pour the second part of the mold up to the middle of the helix. Use the separation agent and make key holes and pour the third part of the mold with plaster.
- Once the mold is set, separate the mold pieces by using hot/boiling water (Fig. 17).
8. PRIME THE ACRYLIC PLATE

Before silicone is placed into the mold, the acrylic plate must be prepared to achieve a strong bond between acrylic and silicone:

• Roughen the surface with a stone.
• Clean the roughened surface with acetone.
• Apply a primer in two thin layers and allow it to dry.
• Place the prepared acrylic plate onto the bar.

9. MIX THE SILICONE AND PACK THE MOLD

• Mix silicone with color pigments to match the skin tone of the patient (Fig. 18). A catalyst must be added according to the manufacturer’s recommendation.
• “Paint” the outer layers of the silicone using as much internal coloration as possible to achieve a life-like prosthesis (Fig. 18).

TIP: Add fibers to mimic superficial blood vessels.

• Let the silicone polymerize.
• Carefully open the mold and remove the prosthesis. Perform any final trimming that may be necessary (Fig. 19).

10. FINAL PATIENT FITTING

• Try the prosthesis on the patient to evaluate retention, fit, and color (Fig. 20).

NOTE: For full retention force, the clip attachment should be activated by carefully compressing the two lamellae.

• Apply extrinsic coloring/tinting if necessary (Fig. 21).
• Deliver the prosthesis to the patient with instructions for taking care of the prosthesis and the surrounding skin.

Cleaning and sterilization guidelines

Reprocessing Guidelines

Reprocess all surgical instruments in accordance with established local routines at the hospital clinic. Recommendations from Cochlear can be found in BUN257 Cochlear™ Baha® System Surgical Tools Reprocessing Guidelines.
As the global leader in implantable hearing solutions, Cochlear is dedicated to helping people with moderate to profound hearing loss experience a life full of hearing. We have provided more than 600,000 implantable devices, helping people of all ages to hear and connect with life’s opportunities.

We aim to give people the best lifelong hearing experience and access to innovative future technologies. We collaborate with leading clinical, research and support networks.

That’s why more people choose Cochlear than any other hearing implant company.

REFERENCES

www.Cochlear.com/US

Follow us on

Cochlear Americas
10350 Park Meadows Drive
Lone Tree, CO 80124 USA
Telephone: 1 303 790 9010
Support: 1 800 483 3123

Cochlear Canada Inc.
2500-120 Adelaide Street West
Toronto, ON M5H 1T1 Canada
Support: 1 800 483 3123

©Cochlear Limited 2021. All rights reserved. Hear now. And always and other trademarks and registered trademarks are the property of Cochlear Limited or Cochlear Bone Anchored Solutions AB. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.